# Unit 3 Slides

Lewis Dot Structures and Polarity

#### Welcome back!

#### Complete the 10/18 bellwork on formative

# KNOW ANY GOOD CHEMISTRY JOKES?



PBO: SWBAT use <u>Lewis dot structures</u> and <u>electronegativity</u> differences IOT predict the <u>polarities</u> of simple molecules (<u>linear, bent, trigonal planar,</u> trigonal pyramidal, tetrahedral) Big picture: We will be investigating and learning about the shape of molecules

#### Step 1–Make the Lewis dot Structure for the **molecule**

• Which electrons are shown on Lewis dot structures?







Lewis dot structures provide much more information about the molecule

#### Rules for making Lewis dot structures for **molecules**

- 1. Determine the number of valence electrons
- 2. Draw your central atom
- 3. Connect other atoms with a single bond (2 electrons)
- 4. Add remaining valence electrons to outer atoms in lone pairs
- Check to see if all atoms have a full valence shell. Too few, make a double or triple bond. If additional electrons remain, place them on the central atom as lone pairs

#### Example: Carbon Tetrafluoride

- 1. Total valence electrons:
  - a. Carbon: 4
  - b. Fluorine: 7 x 4= 28
  - c. Total: 32



#### 2. Central atom

a. C

The central atom is the atom with the lowest subscript. If all the atoms have the same subscript, it is normally the least electronegative atom.

\*\*Hydrogen does not like to be the central atom as it can ONLY form one bond



3. Connect central atom to all other atoms





4. Place remaining electrons around outer atoms in lone pairs

a. Remaining electrons: 32-8=24





5. Check to see if all valence shells are full



# Let's work through NF<sub>3</sub> together

 $SCl_2$ 

 $CI_4$ 

 $\mathbf{PF}_{3}$ 

#### CHCl<sub>3</sub>

 $PCl_5$ 

Complete the Quizizz as your exit ticket

#### Complete your bellwork on goformative

#### Definitions

- Central atom: the atom in the middle of a Lewis dot structure. This will be the atom with the lowest subscript
- Lone pairs: 2 unbonded electrons. Represented with 2 dots
- Single bond: 2 shared electrons. Represented with a line

## Example: HI

#### Double and triple bonds

Double bonds involve the sharing of \_\_\_\_\_ electrons

Triple bonds involve the sharing of \_\_\_\_\_ electrons

#### Lewis dot structure with double bonds: oxygen

#### Lewis dot structure with triple bonds: nitrogen

Write the order of the questions on a separate sheet of paper from your notes

Draw the Lewis structures that are on the chart paper

# Bellwork on a whiteboard draw:

1. CS<sub>2</sub> 2. H<sub>2</sub>O

MAKE SURE YOU HAVE THE TWO SHEETS THAT ARE AT THE FRONT The number of bonds and lone pairs on a central atom affects the shape of the molecule

# VSEPR

Valence Shell Electron Pair Repulsion- the molecular shape is affected by the repulsion of electrons

#### **VSEPR Theory (Molecular Shapes)**

A = the central atom, X = an atom bonded to A, E = a lone pair on A

Note: There are lone pairs on X or other atoms, but we don't care. We are interested in only the electron densities or domains around atom A.

| Total<br>Domains | Generic<br>Formula             | Picture     | Bonded<br>Atoms | Lone<br>Pairs | Molecular<br>Shape | Electron<br>Geometry | Example           | Hybridi<br>-zation | Bond<br>Angles |
|------------------|--------------------------------|-------------|-----------------|---------------|--------------------|----------------------|-------------------|--------------------|----------------|
| 1                | AX                             | A—X         | 1               | 0             | Linear             | Linear               | H <sub>2</sub>    | s                  | 180            |
| 2                | AX <sub>2</sub>                | XX          | 2               | 0             | Linear             | Linear               | CO2               | sp                 | 180            |
|                  | AXE                            | © a—x       | 1               | 1             | Linear             | Linear               | CN.               |                    |                |
| 3                | AX <sub>3</sub>                | ,<br>Ì      | 3               | 0             | Trigonal planar    | Trigonal planar      | AlBr <sub>3</sub> | sp²                | 120            |
|                  | AX <sub>2</sub> E              |             | 2               | 1             | Bent               | Trigonal planar      | SnCl <sub>2</sub> |                    |                |
|                  | AXE <sub>2</sub>               | xx          | 1               | 2             | Linear             | Trigonal planar      | O <sub>2</sub>    |                    |                |
| 4                | AX4                            | ×<br> <br>A | 4               | 0             | Tetrahedral        | Tetrahedral          | SICI4             | sp <sup>3</sup>    | 109.5          |
|                  | AX3E                           |             | 3               | 1             | Trigonal pyramid   | Tetrahedral          | PH <sub>3</sub>   |                    |                |
|                  | AX <sub>2</sub> E <sub>2</sub> | × •x        | 2               | 2             | Bent               | Tetrahedral          | SeBr <sub>2</sub> |                    |                |
|                  | AXE <sub>3</sub>               | × 0         | 1               | 3             | Linear             | Tetrahedral          | Cl <sub>2</sub>   |                    |                |
|                  |                                | × B         |                 |               |                    |                      |                   |                    |                |

#### Example: NH<sub>3</sub>



#### What is the molecular geometry of this molecule

H - H

- 1. Linear
- 2. Bent
- 3. Trigonal planar
- 4. Trigonal pyramidal
- 5. Tetrahedral

#### What is the molecular geometry of this molecule



- 1. Linear
- 2. Bent
- 3. Trigonal planar
- 4. Trigonal pyramidal
- 5. Tetrahedral

#### What is the molecular geometry of this molecule

# $\ddot{O} = C = \ddot{O}$

- 1. Linear
- 2. Bent
- 3. Trigonal planar
- 4. Trigonal pyramidal
- 5. Tetrahedral

Double and triple bonds DO NOT count as additional electron domains

## Determine the bond angles for water $(H_2O)$

- 1. Make the Lewis dot structure
- 2. Use the chart to determine the shape and bond angles



# Make a prediction:

Why is the bond angle of water less than what's on the chart?



Pyramidal shape

Lone pairs on central atom decrease bond angles



# Let's make some models!!

#### Finished early?

- Make more models for chem money
- Work on your homework (due Monday)
- Work on something for a different class

- Make the Lewis dot structure for each compound
- 2. Use clay to make a model for each compound
  - You must attach every electron domain to your model (both lone pairs and bonds)
- In order to get full credit for today you must have your teacher sign off on 5 models



## Complete your bellwork

#### **Phenomena: Fatbergs**



# Agenda

SWBAT use Lewis dot structures and electronegativity differences IOT predict the polarities of simple molecules (linear, bent, trigonal planar, trigonal pyramidal, tetrahedral).

- 2 lab stations
- 2 explain stations
- Notes
- Practice problems
- Exit ticket



The property of two substances to mix and form homogeneous mixtures.



#### Station 1

-Do not mix methanol

-Do not add all of the oil or hydrogen peroxide

-If your station runs out of anything ask me

## **5th period groups**

#### Group 1

- Amaya
- Kiya
- Jeremiah
- Kelby
- Kassy

#### Group 2

- Kelp
- Aron
- Valentin
- Quinlan
- Bryce

#### Group 3

- Jackson
- Vincent
- Luna
- Aimee

#### Group 4

- Nic
- Maddie
- Kyndal
- Morgaan
- Jewel

## 7th period groups

#### Group 1

- Alijah
- Jordan
- Gabe

#### Group 2

- Deacan
- Stella
- Tania

#### Group 3

- Kaylin
- Morgan
- Kylie
- Tisaiah

#### Group 4

- Noah
- Leila
- Hadeel

#### Notes

#### Polarity Notes

-Both individual **\_\_\_\_\_bonds**\_ and whole **\_\_\_\_\_molecules**\_\_\_\_\_ can be classified as polar or nonpolar.

-Atoms with similar \_\_\_\_\_electronegativities \_\_\_\_\_form \_\_\_\_nonpolar \_\_\_\_\_ covalent bonds that \_\_evenly \_\_\_\_ share electrons.

-\_**Polar**\_\_ bonds form between atoms with a significant \_\_**difference**\_\_\_ in electronegativity.

-A <u>**dipole</u>** is the separation of charge. Partial positive on one end and partial negative on the other (**\_pole\_**)</u>

-When a molecule contains multiple dipoles, they can **\_\_\_\_\_cancel out\_\_\_\_** or **\_\_add\_\_\_** to form a net dipole.

-Polar molecules contain \_\_\_**polar bonds**\_\_\_ and are not \_\_**symmetrical**\_\_ resulting in a \_**dipole**\_\_.



#### **Polarity example problem- carbon tetrahydride**

- 1. Lewis dot structure
- 2. Polar or nonpolar bonds
- 3. Symmetry
- 4. Determine if compound is polar or nonpolar

#### **Determining Molecule Polarity: Flowchart**



#### Exit ticket

- 1. Why didn't the oil mix with water?
- 2. Draw a lewis dot structure for SCl<sub>2</sub> and state if it's polar or not.

## Polarity day 2





#### In a nonpolar covalent bond, electrons gather around





# In a polar covalent bond, electrons gather around



#### With your group, read the polarity article

- What is needed for a molecule to be polar?
- Which molecular shapes tend to be symmetric?





#### Overall dipole moment = 0 (a)



Bond moments



# **C** - **N**

Move the symbols to the correct areas for the chemical compound above.

# On your white board determine if the following molecules are polar or nonpolar

 $Cl_2CO$  HI  $NH_3$  IBr  $H_2$   $CO_2$  $BF_3$ 

#### Work on the practice problems with your group



## **Solubility**

- Like dissolves like
- Polar molecules mix with other polar molecules
- Look back at the lab stations, based off the observations are both water and oil polar?

# Which of the following molecules would mix with water? CH<sub>4</sub> HCI CI<sub>2</sub> N<sub>2</sub>

