Unit 2 Slides

Periodic trends and Nomenclature

Graph the periodic trends

Before you start your graph, highlight or underline the points that you need for your graph

Atomic radius*

A measurement for the size of an atom

On your whiteboard

- Draw a Bohr model including number of protons of each of the following atoms:
 H
 - He
 - o Li
 - BeNa

What do we notice is added as we go down a family?

What is added as we go across a period?

Atomic radius

What is the trend as we move across a period?

Down a family?

Moving down a family

The atomic radius **increases** moving down a family due to the added energy shells creating more distance between the valence electrons and the nucleus

More energy levels=less force of attraction=larger atomic radius

The atomic radius **decreases** moving across a period due to the added protons. These added protons create a larger force of attraction which brings the valence electrons in closer

More protons=more force of attraction=smaller radius

Ionic Radius

Adding or taking away electrons will change the radius. This is called an ionic radius.

Would adding electrons make the radius larger or smaller?

Would getting rid of electrons make the radius larger or smaller?

Picometers (pm)

Multiplication Factor	Prefix	Symbol
1	:. 	m
10-2 = 0.01	centi-	cm
10-3 = 0.001	milli-	mm
10-6 = 0.000001	micro-	μm
10 ⁻⁹ = 0.00000001	nano-	nm
$10^{-12} = 0.000000000001$	pico-	pm

Ionization energy*

The amount of energy required to remove one valence electron from an atom

Ionization energy

What is the trend as we move across a period?

Down a family?

Explain the trends

- Ionization energy increases as you move across a period. Why?
- Ionization energy decreases as you move down a family. Why?
- Which has larger ionization energy
 - K or Br
 - Br or I
 - Ba or Be
 - N or Ne

Hint: think about energy levels and number of protons The ionization energy **decreases** moving down a family due to the added energy shells creating more distance between the valence electrons and the nucleus.

More energy levels=easier to remove 1 valence electron=lower ionization energy

The ionization energy increases moving across a period due to the added protons. These added protons create a larger force of attraction which makes it harder to remove one valence electron

More protons=harder to remove 1 electron=higher ionization energy

The ionization energy **decreases** moving down a family due to the added energy shells creating more distance between the valence electrons and the nucleus.

More energy levels=easier to remove 1 valence electron=lower ionization energy

The ionization energy increases moving across a period due to the added protons. These added protons create a larger force of attraction which makes it harder to remove one valence electron

More protons=harder to remove 1 electron=higher ionization energy

Electronegativity*

An atom's tendency to attract electrons in a bond

Based on what we know about charges, will Li or F have a higher electronegativity?

H 2.1																	<u>He</u>
<u>Li</u>	Be											B	<u>C</u> 25	<u>N</u>	0	E	Ne
Na	Mg											<u>A</u>	2.5 <u>Si</u>	<u>Р</u>	<u>S</u>	4.0 Cl	<u>Ar</u>
0.9 <u>K</u>	1.2 <u>Ca</u>	Sc	I	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	1.5 <u>Ga</u>	1.8 <u>Ge</u>	2.1 <u>As</u>	2.5 <u>Se</u>	3.0 <u>Br</u>	Kr
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.9	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8	
<u>Rb</u> 0.8	<u>Sr</u> 1.0	<u>Ү</u> 1.2	<u>Zr</u> 1.4	<u>Nb</u> 1.6	<u>Mo</u> 1.8	<u>Tc</u> 1.9	<u>Ru</u> 2.2	<u>Rh</u> 2.2	<u>Pd</u> 2.2	<u>Ag</u> 1.9	<u>Cd</u> 1.7	<u>In</u> 1.7	<u>Sn</u> 1.8	<u>Sb</u> 1.9	<u>Te</u> 2.1	<u>]</u> 2.5	<u>Xe</u>
<u>Cs</u> 0.7	<u>Ba</u> 0.9	Lu	<u>Hf</u> 1.3	<u>Ta</u> 1.5	<u>W</u> 1.7	<u>Re</u> 1.9	<u>Os</u> 2.2	<u>⊥r</u> 2.2	<u>Pt</u> 2.2	<u>Au</u> 2.4	<u>Ha</u> 1.9	<u>T</u> 1.8	<u>Pb</u> 1.9	<u>Bi</u> 1.9	<u>Po</u> 2.0	<u>At</u> 2.2	<u>Rn</u>
<u>Fr</u> 0 7	<u>Ra</u> 0.9	<u>Lr</u>	<u>Rf</u>	Db	Sg	<u>Bh</u>	<u>Hs</u>	Mt	<u>Ds</u>	<u>Uuu</u>	Uub	<u>Uut</u>	Uuq	<u>Uup</u>	<u>Uuh</u>	<u>Uus</u>	<u>Uuo</u>

Explain the trends

- Electronegativity increases as you move across a period. Why?
- Electronegativity decreases as you move down a family. Why?
- Write the larger electronegativity
 - F or Li
 - Li or Fr
 - \circ O or S
 - He or Xe

Hint: think about energy levels and number of protons The electronegativity **decreases** moving down a family due to the added energy shells creating more distance between the valence electrons and the nucleus.

More energy levels=less likely to attract an electron=lower electronegativity

The electronegativity **increases** moving across a period due to the added protons. These added protons create a larger force of attraction which makes it easier to attract an electron

More protons=more likely to attract an electron=higher electronegativity

Electronegativity can show us bond type

We will discuss these bonds throughout this whole unit

Hold up a finger for which atom has a larger atomic radius

- 1. Cesium (Cs)
- 2. Lithium (Li)

Hold up a finger for which atom has a higher electronegativity

- 1. Chlorine (CI)
- 2. Magnesium (Mg)

Hold up a finger for which atom has a higher ionization energy

Tin (Sn)
Carbon (C)

Hold up a finger for which atom has a higher ionization energy

- 1. Nitrogen (N)
- 2. Neon (Ne)

Ionization Energy increases

Electronegativity increases

Atomic

radius

increases

Which would have the lowest ionization energy

- 1. H
- 2. Li
- 3. C
- 4. Rb
- 5. Zr

Periodic Table of the Elements

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
Lantanan /	Gartan -	Augustion in the	Manadamian No.34	1 mm	Served and P	tangian (distantinum Mit.ph	Terline MATE	-	and and a	1 010am	Talan I	the first	Cumbum. Skill	j
Ac	Th	Pa	Ů	Np	Pu	Åm	Čm	Bk	Ċf	Es	Fm	Md	No	Ľr	
400 H	Same 1	Rataction of Lands	Dana Data	an i	Annual I	American 1	Settin 1	deriverian Delti	Contempo	- downers	i Aerman	Season I	anna 1	Lawrence .	i

Periodic Trend Name	Atomic Radius	Ionization Energy	Electronegativity			
Definition	Measurement of the size of an atom.	The amount of energy needed to remove an outermost electron.	The tendency of an atom to attract electrons in a bond.			
Trend Down a Family with reasoning	Increases. Increased energy levels = less force of attraction= larger atomic radius.	Decreases. More energy levels=easier to remove 1 valence electron=lower ionization energy	Decreases More energy levels=less likely to attract an electron=lower electronegativity			
Trend Across a Period with Reasoning	Decreases. More protons=more force of attraction=smaller radius	Increases. More protons=harder to remove 1 electron=higher ionization energy	Increases More protons=more likely to attract an electron=higher electronegativity			

Covalent Nomenclature

 $\bullet \bullet \bullet$

9/20-21/22

Bellwork on goformative

 $\bullet \bullet \bullet$

Name's Bond,

Ionic Bond.

Taken, not

shared

Complete the quiz- you can use your notes but NO TECHNOLOGY

When you finish, look at this website https://www.dhmo.org/truth/Dihydrog en-Monoxide.html (link in bellwork)

• What do you think we should do about DHMO? Be prepared to share

• Talk at your groups about what we should do about DHMO

DHMO is WATER (H₂O)

Nomenclature

Scientists use a specific system in order to prevent confusion

Today we will learn about the system for naming covalent compounds

Covalent bonding review

- Covalent bonds are typically between nonmetals
- In covalent bonds the atoms share a pair of electrons
- Covalent compounds are named differently than ionic compounds

What trends do you notice with the following names? Turn and talk

- CO₂- Carbon Dioxide
- NO- Nitrogen Monoxide
- SF₆-Sulfur Hexafluoride
- N_2O Dinitrogen monoxide

1. The least electronegative element is named first

- 1. The least electronegative element is named first (typically)
- 2. If there is a subscript on the first element, then a prefix will be used

Number	Greek Prefix	Number	Greek Prefix			
1	N/A	6	hexa			
2	di	7	hepta			
3	tri	8	octa			
4	tetra	9	nona			
5	penta	10	deca			

3. A prefix will be used for the second element (even if only one is present)

Number	Greek Prefix	Number	Greek Prefix
1	mono	6	hexa
2	di	7	hepta
3	tri	8	octa
4 tetra		9	nona
5	penta	10	deca

4. Drop the ending of the second element and replace it with "ide"

- The ending is always dropped at a vowel
 - Fluorine —> Fluoride
 - Chlorine —> Chloride
 - Oxygen —> Oxide
 - Hydrogen —> Hydride

Example- CF₄

- 1. The least electronegative atom is named first
- 2. If there is a subscript, then a prefix will be used
- 3. A prefix will be used for the second element (even if only one is present)
- 4. Drop the ending and replace it with "ide"

- 1. Carbon
- 2. N/A
- 3. Tetra
- 4. Fluoride

Carbon tetrafluoride

Example- H₂O

- 1. The least electronegative atom is named first
- 2. If there is a subscript, then a prefix will be used
- 3. A prefix will be used for the second element (even if only one is present)
- 4. Drop the ending and replace it with "ide"

- 1. Hydrogen
- 2. Di
- 3. Mono
- 4. Oxide

Dihydrogen monoxide

Practice problem- Name N_2O_5

- 1. Nitrogen pentoxide
- 2. Dinitrogen pentoxide
- 3. Dinitrogen tetroxide
- 4. Mononitrogen dioxide

Practice problem- CO

- 1. Carbon monoxide
- 2. Monocarbon monoxide
- 3. Carbon monoxygen
- 4. Monocarbon oxide

What is a covalent bond?*

A covalent bond is a chemical bond that involves the sharing of electron pairs between atoms

Covalent bond properties

- Bad conductors (no ions)
- Difference in electronegativity is typically less than 1.8
- Low melting and boiling point

States of matter for covalent compounds

Due to low melting and boiling points, what states of matter do you think covalent compounds are at room temperature?

Discuss with your group

Compound	Melting Point (°C)	Boiling Point (°C)
ethanol , C_2H_5OH	-114	+78.3
ammonia, NH ₃	-77.7	-33.3
cesium bromide, CsBr	+636	+1300
hydrogen, H ₂	-259	-253
hydrogen chloride, HCl	-114	-85
magnesium oxide, MgO	+2825	+3600
methane, CH ₄	-182	-161
nitrogen, N ₂	-210	-196
sodium chloride, NaCl	+801	+1465
water, H_2O	0	+100

Work on your practice problems

Hallway races

- We will be practicing our nomenclature in a hallway race
- Every student needs a marker
- Every group member must go before you can go again
- You can only answer one question OR make one correction
- Cheer on you team and help them from the locker side of the hallway
- WINNERS: get 2 chem money

Exit ticket

Take your exit ticket on formative

Ionic Nomenclature

SADANDUSELESS.COM

 SWBAT list the rules for naming ionic compounds in order to be able to formulate the correct names for specified ionic compounds.

Metals, Nonmetals, and Metalloids

Н																	He	
Li	Ве									в	с	Ν	0	F	Ne			
Na	Mg	Mg								AI	Si	Ρ	S	СІ	Ar	metals		
к	Ca	Sc	Ті	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	T	Xe	metalloids
Cs	Ba	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	ті	Pb	Bi	Po	At		
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	-	Uuq	-	-	-	-	nonmetals

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Th	Pa	υ	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Jack Westin

No prefixes are used when naming ionic compounds!

***Ionic Formula to Name Rules**

1. Write down the name of the metal. 2. Write down the name of the non-metal. 3. Change the ending of the non-metal to

•

Write the Name of NaCl

1. Write down the name of the metal. 2. Write down the name of the non-metal. 3. Change the ending of the non-metal to -ide

- 1. Sodium
- 2. Chlorine
- 3. Chloride

Sodium Chloride

Write the Name of MgI₂

1. Write down the name of the metal. 2. Write down the name of the non-metal. 3. Change the ending of the non-metal to -ide

Magnesium
 Iodine
 Iodide

Magnesium Iodide

A. Iodine Sodide
B. Sodium Iodine
C. Sodium Iodide
D. Sodium Monolodide

How to Edit

Click Edit This Slide in the plugin to make changes.

Don't have the Nearpod add-on? Open the "Add-ons" menu in Google Slides to install.

*Ionic Name to Formula Rules

1. Write down the charges of the

.

ions.

 Criss-cross the charges down to the subscripts.

*Calcium Bromide Formula

1. Write down the charges of the ions. 2. Criss-cross the charges down to the subscripts. CaBr⁻¹ CaBr

Potassium Nitride Formula

1. Write down the charges of the ions. 2. Criss-cross the charges down to the subscripts. N-3

) A. Rb ₂ S	
B. RbS	
C. RbS2	
D. Rb2S2	

How to Edit

Click Edit This Slide in the plugin to make changes.

Don't have the Nearpod add-on? Open the "Add-ons" menu in Google Slides to install.

Time for a OUIZIZZ

*The first step in naming is ALWAYS determining if the compound is covalent or ionic

*Ionic compounds are metal + non-metal

*Covalent compounds are two non-metals

Ionic or Covalent?

- 1. Be₃N
- 2. NaCl
- 3. CO₂
- 4. NO₃

5. LiCl

A. lonic	
B. Covalent	

How to Edit

Click Edit This Slide in the plugin to make changes.

Don't have the Nearpod add-on? Open the "Add-ons" menu in Google Slides to install.

Time for a OUIZIZZ
Complete the Chemistry 9/25 Gotomative

What is the formula for Iron (II) Oxide?

Talk with your table groups to determine this formula. (Hint: The roman numeral II gives us the charge of the iron)

*Naming Ionic Compounds that include transition metals

- The roman numeral in the written name provides the **charge** of the transition metal.
- When writing the formula the charges must equal 0

Formula to Name with Transition Metals CoCl₂

Name to Formula with Transition Metals Gold (III) Chloride

Mercury (II) Oxide

Polyatomic ions nomenclature

9/27-28

9/27 Chem GoFormative

SWBAT use the periodic table and electronegativity differences of elements IOT write the names of chemical compounds including polyatomic ions using IUPAC criteria.

Chemistry in pottery

A combination of iron and oxygen are used to create all the following colors in pottery.

How do you think this is possible?

Chemistry in pottery

Monatomic ions

- Single atom that either gains or loses an electron to become an ion
- Ex: Cl-

Polyatomic ions

 A molecule that has gained or lost an electron to become an ion

Polyatomic ions

 A molecule that has gained or lost an electron to become an ion

Common Polyatomic Ions			
Ion	Name	lon	Name
NH_4^+	Ammonium	CO ₃ ²⁻	Carbonate
NO ₂	Nitrite	HCO ₃	Hydrogen carbonate ^{Or} Bicarbonate
NO ₃	Nitrate	CIO	Hypochlorite
SO ₃ ²⁻	Sulfite		Chlorite
SO42-	Sulfate		Chlorate
HSO ₄	Hydrogen sulfate ^{Or} Bisulfate		Perchlorate
ОН.	Hydroxide	$C_2H_3O_2$	Acetate
CN	Cyanide	MnO ₄	Permanganate
PO43-	Phosphate	Cr ₂ O ₇ ²⁻	Dichromate
HPO ₄ ²⁻	Hydrogen phosphate	CrO ₄ ²⁻	Chromate
H ₂ PO ₄ ²⁻	Dihydrogen phosphate	02 ⁻	Peroxide

Let's play polyatomic bingo to familiarize ourselves with polyatomic ions

Naming polyatomic ions

What is the name of the compound with the formula AIPO₄

Aluminum Phosphate

RULES:

- Name the metal first
- Name the polyatomic ion
- Never drop the ending of a polyatomic ion

Name $(NH_4)_2S$

• Ammonium Sulfide

Name $Ni_3(PO_4)_2$

• Nickel (II) Phosphate

Polyatomic ion name to formula

What is the chemical formula for calcium hydroxide?

Ca(OH)₂

- Find charges of ions
- Cross charges
- Include parenthesis
 when adding a
 subscript to polyatomic
 ions

Transition Metals

 For transition metals the charge must be indicated with Roman numerals in parentheses

What would the formula be for Iron (II) Hydroxide?

Whiteboard practice

Write the formula for

- Calcium carbonate
- Magnesium nitrite
- Sodium acetate

Whiteboard practice

Write the formula for

- Manganese (III) Oxide
- CoO
- HgN

Whiteboard practice

Name	Formula
	FeCN
	SF ₆
	(NH ₄) ₂ Cr ₂ O ₇
Copper (III) hydroxide	
	SrCl ₂
Magnesium hydroxide	

Station 4-Quizizz code 4865 0275

Complete Nomenclature Review GoFormative

Complete the 4 review stations

- Complete the ionic and covalent properties card sort. Have Mr. Emptage check it when you finish.
- Complete the questions in the station 2 section of the sheet using the article to help you.
- Complete the Nomenclature domino style card sort. You may google search the acids and the cards that have formulas that start with H.
- 4. Complete the Quizizz with the Join Code **8706 0871**

IF DONE EARLY

Compete the QUIZIZZ with the join code