

Math Weekly Lesson Preparation Guide

Teacher Name: Kimberly West	Grade: 11 th /12 th Precalculus
Week of: March 31 st thru April 4 th	Lesson: Fundamental Trigonometric Identities

Purpose: The Weekly Lesson Preparation Guide is to provide a structure that encourages teachers to think through and internalize the daily/weekly instructional expectations.

Planning Questions	on ourse to provide a stracture unit encouraged teachers to timik timology and internatize the daily/weekly instructional expectations.	
1. Which specific Tennessee standard(s) are being addressed in this lesson? What is the focus of this lesson? What will the lesson objective be for each day?	P.G.TI.A.1 Apply trigonometric identities to verify identities and solve equations. Identities include: Pythagorean, reciprocal, quotient, sum/difference, double-angle, and half-angle Vocabulary *Identities *Cofunction Identities *Reciprocal OBJECTIVE: I can use fundamental identities to evaluate trigonometric expressions. I can use fundamental identities to simplify trigonometric expressions.	
Modeling: 2. What specific tasks/problems will you use to reveal understanding of the grade-level standard(s)? (refer to the Instructional Focus Document Evidence of Learning Statements	Fundamental Trigonometric Identities Part A • Uses for identities • Evaluate trig functions • Simplify trig expressions • Develop more identities • Solve trig equations	

Adapted from TDOE Unit and Lesson Preparation Guides

Fundamental Trigonometric Identities

Reciprocal Identities

$$\sin u = \frac{1}{\cos u} \qquad \csc u$$

•
$$\cos u = \frac{1}{\sec u}$$

• $\tan u = \frac{1}{\cot u}$

$$\cot u = \frac{\cos u}{\cos u}$$

Pythagorean Identities

$$\cdot \sin^2 u + \cos^2 u = 1$$

•
$$\sin^2 u + \cos^2 u = 1$$

• $\tan^2 u + 1 = \sec^2 u$
• $1 + \cot^2 u = \csc^2 u$

•
$$1 + \cot^2 u = \csc^2$$

Quotient Identities

•
$$\tan u = \frac{\sin u}{\cos u}$$
 $\cot u = \frac{\cos u}{\sin u}$

$$\cot u = \frac{\cos u}{\sin u}$$

Fundamental Trigonometric Identities

Even/Odd Identities

•
$$\cos(-u) = \cos u$$

•
$$\sec(-u) = \sec u$$

•
$$\sin(-u) = -\sin u$$

•
$$tan(-u) = -tan u$$

•
$$\csc(-u) = -\csc u$$

•
$$\cot(-u) = -\cot u$$

Cofunction Identities

•
$$\sin\left(\frac{\pi}{2} - u\right) = \cos u$$

•
$$\cos\left(\frac{\pi}{2}-u\right)=\sin u$$
 Identities that relate the values of trigonometric functions of complementary angles. Two angles are complementary if their sum is $90^\circ, or\,\frac{\pi}{2}$

The cofunction identities are based on the idea that for any angle is

•
$$\tan\left(\frac{\pi}{2} - u\right) = \cot u$$

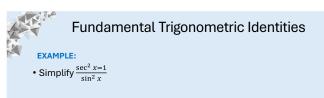
•
$$\cot\left(\frac{\pi}{2} - u\right) = \tan u$$

•
$$\sec\left(\frac{\pi}{2} - u\right) = \csc u$$

•
$$\csc\left(\frac{\pi}{2} - u\right) = \sec u$$

Cofunction identities are set of trig.

The cofunction identities are based on the idea that for any angle θ :


•
$$\sin(90^{\circ} - \theta) = \cos(\theta)$$

•
$$\cos(90^{\circ} - \theta) = \sin(\theta)$$

•
$$\sec(90^{\circ} - \theta) = \csc(\theta)$$

•
$$\csc(90^{\circ} - \theta) = \sec(\theta)$$

Fundamental Trigonometric Identities EXAMPLE: • Simplify $\sin \varphi (\csc \varphi - \sin \varphi)$

Fundamental Trigonometric Identities

EXAMPLE:

• Simplify $\cos\left(\frac{\pi}{2} - x\right)(\sec x)$

3. Practice (student task)	*Selective Practice Problems: Board-work/ Handouts/Quizizz/Khan Academy *Look and listen for proper steps and vocabulary used to explain each step in the problem-solving process	
Additional Considerations		
If your lesson contains homework, how will you utilize the work? Will you need to send scaffolding notes home? Is there a strategy you can use to maximize homework?	Homework will be utilized by: Align with Learning Objectives: Ensure that homework directly relates to the concepts taught in class, allowing students to apply their learning. Variety of Tasks: Include different types of problems (e.g., practice, application, extension) to cater to various levels of understanding and to reinforce the concept from multiple angles. Scaffolded Problems: Start with easier problems and gradually increase difficulty. This helps build confidence and understanding before tackling more complex tasks. Extension Challenges: Include a few challenging problems that encourage critical thinking and exploration beyond the basic concepts.	